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The stability of motion of a dynamically symmetric satellite with respect to 
its center of mass in a central Newtonian gravitational field is investigated. 

The satellite is a solid body whose center of mass moves on an elliptic orbit. 
The particular case in which the satellite axis of symmetry is normal to the 

orbit plane (the so-called cylindrical precession [l, 23) and its absolute angular 

velocity projection on the axis of symmetry is zero, is examined. Analytical 

and numerical methods are used. Regions of Liapunov instability .and of stabi- 
lity in the first approximation are obtained in the parameter space of the pcob- 

lem (the inertial parameter and the orbit eccentridty). Detailed nonlinear 

analysis is carried out in the latter, and the formal stability of the satellite 
cylindrical precession is proved. The question of stability for the majority of 
intial conditions is also considered [4]. 

1, Let OXYZ be an orbital system of coordinates whose OX -axis is directed 
along the transversal to the orbit, the OY - axis lies on the binormal, and the OZ -axis 
along the radius vector of satellite mass center 0 . We denote by Oxyz the system of 
coordinates attached to the satellite whose Oz -axis is directed along the satellite axis 

of symmetry. The position of the body system of coordinates relative to the orbital one 

is determined by Euler’s angles 9, 6 and cp (9 is the precession angle, 6 is the nutation 

angle, and cp is the angle of spin). 

The linear dimensions of the satellite are considered to be small in comparison with 

those of the orbit, hence it is possible [2] to assume that the motion of the satellite rela- 
tive to its center of mass does not affect the orbit of the center of the mass itself. On 
these assumptions the satellite motion relative to its center of mass can be defined by 

canonical differential equations with the Hamilton function of the form [5] 

p: 
2 

H= 
P8 

2 (1+ e co9 v)2 sin2 6 + 2(1 +ecosv)2 -p+ctg*cosg- (1. 1) 

up (2 - e2p ‘cos 6 
(1 + e co9 v)% PJ, - - sin2 6 

pQ Sill ql + a/3 (1 -- e’)‘lt s + 

u2f3* (1 - e*)3 

2 (1 + e cos v)’ 
ctfg2* +-+-(a - 1)(1 + ecosv)cos”6 

(1.2) 

where A and C are the equatorial and the polar moments of inertia of the satellite, 
e is the eccentricity of the orbit of satellite center of mass, v is the true anomaly taken 
as the independent variable, z is the period of circulation over the orbit, and r. is the 
projection of the satellite absolute angular velocity on the axis of symmetry which is an 
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integral of motion. The momenta denoted in (1.1) by.p+ and pe are canonically con- 
jugate to the variables 9 and 6. 

The equations of motion that correspond to Hamiltonian (1.1) have the following par- 
ticular solution [6] : 

e. = n/2, $0 = n, pe, = 0, p& = 0 (1.3) 

This solution correponds to the so-called cylindrical precession of the satellite [1] 
for which the satellite axis of symmetry is at all times normal to the orbit plane, and the 
satellite itself rotates around its axis of symmetry at constant angular velocity ro. 

The problem of stability of a satellite cylindrical precession in an elliptical orbit was 
considered in [7, 81. The basic results of these investigations concern the analysis of 
stability of linearized equations of motion and the approximate analysis of nonlinear 

oscillations of the satellite axis of symmetry. In this paper the problem of stability of 

the satellite cylindrical precession is considered in a strictly nonlinear formulation, and 

is restricted to the case when parameter fl in the Hamiltonian (1.1) is zero, which cor- 
responds to the translational motion of the satellite in absolute space. Analytical and 
numerical methods are used, respectively, for small and arbitrary e . 

2. Substituting in the Hamiltonian (1.1) the following variables: 

6 = n/.2 + ql, $ = x + q2, PJ~ = pl, p+ = p2 (2.1) 

we obtain the formula for the Hamilton function of perturbed motion. It can be readily 

verified that odd power forms H, are absent from the series expansion of the Hamil- 

tonian of perturbed motion. We have 

H = H, + Hq -k He +- ..a (2.2) 

which is obtained by a setting in (1.1) /3 equal zero. Forms Hz and H, which willbe 

required in the subsequent analysis are 

Hz = 1 
2 (1 + e cos v)s (P12 + P22) + PlQ2 - QlP2 + (2.3) 

+(a - l)(l + ecosv)q12 

H4=-+(a--W+ecos@qf+ 2~i+~cosv~e q12p22-- (2.4) 

f 413P2 + 
1 i 

T Q14a2P2 - -ij- 423Pl 

The stability of the satellite cylindrical precession in the case of a circular orbit 
(e = 0) was investigated by numerous authors [l, 5, 9 - 141. It follows from [5, 9- 11, 

141 that on a circular orbit for fi = 0 the precession is Liapunov stable for all values of 
parameter a within the interval 1 < a < ‘/a. Note that when 0 < a < 1 and 4f3 < 
a < 2 the considered precession on a circular orbit is Liapunov unstable [9 - 131. 

9, Let us first consider the stability on an elliptic orbit in the first approximation. 
For small eccentricities we shall consider the problem of parametric resonance. For 

e = 0 the canonical substitution of variables qi, pi + qf’, pi’, carried out by for- 
mulas 

q1 = alpI' - a2p2’, q2 = - a,m, (1 + b,) ql’ - a2a2 (1 + b2)qz' t3. l) 

PI = al~,blql’ + a202b2q2’, p2 = alblpl’ - a2b2P2’ 
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I--0.2 
bi = L 

1+oi”, 

1+oi2 ’ ai = J//oi 10: - 11 (oi” + 3) 

where Oi = 6Ji (a) (i = 1, 2; o1 > o2 > 0) are the roots of equation 

04 - (3a - 1) 09 + (4 - 3a) = 0 (3.2) 
reduces form Hs to 

H% = l/@I (q/ + PI’*) - l/202 (4i2 + za (3.3) 

For 0 < e s 1 instability is possible owing to the occurence of parametric reso- 
nance. With the use of the Krein-Gel’fand-Lid&ii theorem [15] we find that for small 

e instability is only possible in the considered problem when parameter CL is such that 
at least one of the quantities &.o,, 20, or or- @a is an integer. 

Fig, 1 

The dependence of frequencies or and @a on cc 
is shown in Fig. 1. Using (3.2) it can be shown 

that for small e and 1 < cc < 4/e instability is 

possible in this problem only in the following three 

cases : 

co1 = v2, co2 = v2, 01- 02 = 1 (3.4) 

The corresponding values of parameter a are 

CL1 = 1.1603, as= 1.1500and a3 = 1.1547 
When e # 0 the instability regions issue from 

points CZ~ (i = 1,2,3) in the e, CL -plane. 

Equations of the instability region boundaries can 
be analytically determined if e is small. It ap- 

pears that the instability region which corresponds 

to the first of resonances (3.4) is present only in 

the third approximation by e , while that which corresponds to the second and third reso- 

nances (3.4) is present even in the first approximation by e Calculations have shown 

that the equations of related instability regions are of the form _ 

a = a2 f e.0.015 + 0 (e2), 01 = cc3 * e . 0.211 + 0 (e”) 

The investigation of stability in the case of considerable eccentricity necessitates the 

use of a computer, This requires, first, the determination of the fundamental system of 
solutions of the linear system of differential equations that correspond to Hamiltonian 

(2.3) with constant e and a , when v = 2n , followed by the calculation of coefficients 

of the characteristic equation 

p” - a$ + a,ps - a,p + 1 = 0 
If the inequalities 

- 2< a,< 6, 4 (a2 - 2)< a12< v, (a, + 2P 

are also satisfied, the considered values of parameters e and c1 belong to the stability 
region in the first approximation [IS]. The first approximation stability regions (hatched) 
and regions of Liapunov instability of the satellite cylindrical precession in the e, a - 
plane are shown in Fig. 2. The illustrated results of stability investigations are a refine- 
ment of those presented in [8] for the case of small e. It is rather difficult to derive 
numerically the. instability region issuing from point ~r,owing to the smallness of 
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eccentricity. That region is shown schematically in Fig. 2. 

Fig. 2 

4. It is necessary to resort to nonlinear analysis for complete investigation of the sta- 
bility region of the linear system of differential equations that correspond to the Hamil- 
tonian (2.3). When parameters e and cc are contained in the region where the necessary 
conditions of stability are satisfied, the Ha~l~idan (2.3) can be reduced to the form 

Ho = 1lzhl (ql”* -i- PI”7 -5 1/2& (Qzlt2 + Pz”“> (4.1) 

by the real canonical 2n-periodic with respect to v change of variables qi, pi --f qi”, 

Pi” l 
This transformation must be carried out on a computer when the small parameter 

is absent. The algorithm of related calculations is presented in [17]. Instability is pos- 
sible for values of parameters e and a from the hatched region in Fi& 2. In the first 
instance it can occur for such values of parameters e and a at which the third or fourth 
order resonance 

6 -I- n&, = N (4.2) 

is present. In this formula ni and N are integers and 1 nl ] f 1 n, 1 = 3 or 4 . 
Conditions of ~t~i~~ of Ha~ito~~ systems with resonances (4.2) were obtained 

in [18]. 
In the considered problem third order resonances do not induce instability, since in ex- 

pansion (2.2) of the Hamiltonian of perturbed motion the third power form with respect 
to qi and JJi is absent. Fourth order resonances require detailed investigation. 

Let there be a single fourth order resonance, i.e. formula (4.2) is satisfied only for 
one pair of integers n, and rzs the sum of whose absolute values is equal four. If thesigns 
of n, and n2 ate different, then, according to [3 JI formal stability or instability exists 
for any arbitrarily high finite nonlinear approximation with respect to qt, pi. When 
n, and n, are of the same sign, for instance nZ > 0 , then, by a nonlinear 2~ -periodic 
with respect to v real canonical substitution of variables Q~“, pill --t qi*, pi* , it is 
possible to reduce the Hamiltonian to the form [18] 

H = h,r, + bars + G (rr, rs) + r,ff@V;i*n* x (40 3) 
[P flk nr sin hcpl A- w2 - NV) + IS,*, % ~0s (wl + w+ - 

WI + 0 (PI + cJ’l9 

G h, rJ = ~zor? + Lm -I-- U-2 

qj* = VT& sin qi, pi” = VZCOS qpi 

(hi, f% IL* and Yn,, ,,% are real numbers). 
When the small parameter is absent, the coefficients of expansion (4.3) must be de- 

termined on a computer. 
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(for ni = 0 , ni “? = 1) is satisfied, the considered motion is Liapunov unstable. 

For the opposite sign in the inequality (4.4) stability is present when at least up to and 
including fourth order forms are taken into consideration in the expansion of the Hamil- 

tonian. Finally, when the fourth order form with respect to qi*y pi* 

F == G (rl, r2) -f- rl:*ntf:lon’ I&,, ns .Gn (nlqp, + nzq32> + 

Y7? $, 7t* cos (wpl -t %cpz)l 

is of fixed sign, the motion is formally stable. 
If resonancesupto and including fourth order are absent, pn,, ,,$ and ynt, nl in Ha- 

miltonian (4.3) are identically zero. In that case, under condition of fixed sign of the 

quadratic form f; frl, r-2) the motion in region ri > U is formally stable [l9]. If, 

however, the inequality 
D = 1,,2 - ‘%,I,, # 0 (4.51 

is satisfied, the unperturbed motion is stable (in the sense of Lebesgue measure) for the 
majority of initial conditions [4]. 

6, The stability and instability conditions formulated in Sect. 4 were applied in nu- 
merical and analytical investigation of the stability of satellite cylindrical precession, 
First, let us consider the case of small eccentricity. First approximation computations 

show the existence of 13 fourth order resonance curves in the stability region. Ten of 

these curves correspond to integers ni of identical sign, which appear in the resonance 

relationship (4.2). For e = 0 the resonance curves issue in the e, a-plane from 
points af”) specified in Table 1, 

Table 1 

M I Resonance OCi a(‘) 

1 4x2 = -3 1.0403 -0.0746 
2 Al+ 3J”z = --1 1.0409 -0.0551 
3 2k + 2h2 = 1 1.0411~ -0.0755 
4 3hlf I.% = 3 1.0411 -6.0760 
5 4k = 5 1.0412 -0.0764 
6 k - 3hz = 3 1 A458 -2.2114 
7 hl + 3ha = n 1.1543 GS.6744 

When e is small, the equations of resonance curves are of the form 

,243 

8 

9 
10 
11 
12 
13 

a = CC(O) + e‘+%(a) + . . . 

where cz@j is defined by formula 

o(3) = 
r&a) + n&t) 

~*d~~~du - n~d~~~du 

.(‘j 

1.1574 8.7770 
1.1671 2.2475 
1.2757 0.1032 
1.2859 0.0990 
1.29S6 0.0949 
1.3243 0 .OO”B 

(5.1) 

(5.2) 

in which a = cd@ is to be set, The quantities h,@j in formula (5. 2) are the coeffici-. 
ents at e2 in the expansion of hi that appear in the Hamiltonians (4.1) and (4.3) in 
powers of the eccentricity 
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hl = w1 + ehf’ + e2hc2) + 1 * . . , ii2 = - 82 + r?hp’ + $hf’ + . . . 

Analysis shows that hI(lj = b(r) = 0 . The quantities hi(s) may be represented as 

functions of o1 and o,, and 

hP'(~l~ @A) = (01 
*-1)(301~+60q'+i70? -8) _ 

~l(o,B+3)'1(4(@-i) 

(1 - q%Q) (3014+ o$+602- 40,~-55) , 
@I(9 - O+.02~)(O~~ + oz* - 5) 

@' = I$'(- 02,oJ 

The quantities ata) in Eqs.(5.1) of resonance curves are adduced in the table. 

For e = 0 the coefficients I,, of function (4.3) were obtained analytically. After 
some rather cumbersome computations they can be written as follows: 

I,, = _ (1 -al?)” l 2(0,2+0~2-6) 
4(3 + cq)2 ' 'I = olo2(012+w2~+6) 

1 02 = - 
(1 - a292 

4 (3 + 022)’ 

Using Eq. (3.2) we find that in the interval 1 < a < 4/9 all 111 are negative. This 

implies that for e = 0 the quadratic form G (rI, r2), defined in (4.3) has a fixed sign 
in the region rl > 0 and r2 > 0. Hence For fairly &all eccentricities and in the 

absence of fourth order resonances the satellite cylindrical precession is formally stable. 
Let us further show that for small e and absence of fourth order resonances the satel- 

lite cylindrical precession is stable under the majority of initial conditions. To do this 

it is necessary to ascertain that inequalities (4.5) are satisfied when e = 0. Simple 

0 0.2 0.U 0.6 0.8 e 

Fig. 3 
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computations show that 

D = 1112 - 412,,lo2 = .144u3 + 95u2 + 18u - 1 
4(9u_-)2 7 n--l-202 

-2 

With the use of Eq. (3.2) we obtain that for 1 < a< 4/s the quantity u > 1. 

This clearly implies that D > 0 and, consequently, condition (4.5) of stability is satis- 
fied for the majority of initial conditions when e = 0 . 

6, Numerical computations were used in the investigation of stability for arbitrary 
values of parameters a and e contained in the stability region of the first approxima- 
tion, Curves of fourth order resonances in the e, cc -plane are shown in Fig. 3, where 
where they are denoted by numbers conforming to those in Table 1. They issue from 

points CZ(O) in a direction normal to the u-axis. Since curves 1-5 lie very close to 

each other, they are represented by a single line. Calculations show that in the first ap- 

proximation the satellite cylindrical precession is formally stable throughout the stability 

region irrespective of the presence or absence of resonance (note that stability at reso- 

nance curve intersections was not investigated). 
The test of condition (4.5) shows that stability under the majority of initial conditions 

is present almost everywhere in the stability region in the first approximation, except 

possibly at the fourth order resonances curves and at curve D k 0 shown in Fig. 3 by a 

dash line. 
The described investigations make it possible to formulate the basic conclusion of tnis 

paper in the form of the following statement. The cylindrical presession of a satellite 
which does not spin around its axis is formally stable for any values of parameters e and 

a that belong to hatched stability region (Fig. 2) in the first approximation and do not 

coincide with the intersection points of fourth order resonance curves ; if, furthermore the 
parameters belonging to fourth order resonance curves and curve D = 0 shown in Fig. 

3 by the dash line, are excluded, the investigated satellite precession is stable (in the 

sense of Lebesgue measure) under the majority of initial conditions. 
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Under certain specified conditions the asymptotic stability is a coarse property 

[l],(i. e, addition of fairly smooth unctions tothe right-hand sides of equations 
does not disturb the asymptotic stabiIity). It is shown below that in this case the 

unperturbed system is coarse in a more general sense, namely, any smooth sys- 
tem acted upon by fairly small smooth perturbations, can be returned to its un- 
perturbed state by a smooth reversible tr~sformation. The value and order of 
the perturbations and the domain of existence of the transformation are aII es- 
timated explicitly. The condition required for the above assertion to hold, is 
that of the existence of a Liapunov function admitting, together with its deriva- 

tive, specified estimates, This requirement holds, in particular, in the case when 
the right-hand sides of the unperturbed system are homogeneous functions, the 


